
Solution Key to exam in Financial Econometrics A: Volatility
Modelling, January 2016
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Question A:

In finance (as well as elsewhere) much attention has recently been on OLS
regression of returns yt on predictive regressors xt. We can write this as,

yt = βxt + εt, t = 1, 2, ..., T. (1)

In the next we will make different assumptions about the stochastic properties
of the innovations εt. The interest lies in testing if β = 0, which we write as
H : β = β0 = 0.
It is well-known that if εt are i.i.d.N(0, 1) distributed the MLE of β is

given by the OLS estimator,

β̂ =
T∑
t=1

ytxt

(
T∑
t=1

x2t

)−1
. (2)

Question A.1: When β0 = 0 (that is, the hypothesis H holds) it follows
that,

β̂ =
1

T

T∑
t=1

εtxt

(
1

T

T∑
t=1

x2t

)−1
(3)

Discuss conditions on xt which ensure

1

T

T∑
t=1

x2t
p→ σ2x > 0. (4)

Discuss briefly one or two examples of financial variables which may satisfy
this condition. Explain why.
Solution: In line with the lecture notes, xt should be weakly mixing with

E[x2t ] <∞. Under this condition the convergence (in probability) would fol-
low by a LLN for weakly mixing processes. One example is the case where xt
is a log-return following an ARCH(1) process with α < 1. The good answer
would also mention that one may use the drift criterion (under suitable con-
ditions) to establish that xt is weakly mixing with E[x2t ] <∞. No derivations
are required.

Question A.2: Assume next that εt follows an ARCH specification, that is
εt is an ARCH(1) process given by,

εt = σtηt, ηt i.i.d.N (0, 1) and σ2t = 1 + αε2t−1. (5)
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Under which conditions on α does it hold that

1

T

T∑
t=1

ε4t
p→ κ4 > 0? (6)

Be specific about why it holds. (Hint : Recall that E[η4t ] = 3)
Solution: Again, we need a LLN for weakly mixing processes. First,

since ηt is Gaussian, εt is a Markov chain with a nice transition density.
It can then be shown that εt satisfies a drift criterion with drift function
δ(ε) = 1+ ε4 provided that α < 1/

√
3. This ensures that εt is weakly mixing

with Eε4t <∞.
Question A.3: Next assume that εt follow an ARCH specification and that
(εt, xt)

′ is a Markov chain which satisfies a drift criterion with drift function,

δ (ε, x) = 1 + ε4 + x4. (7)

Show that under this assumption and that E[ηtxt|εt−1, xt−1] = 0,

√
T β̂ =

1√
T

T∑
t=1

εtxt

(
1

T

T∑
t=1

x2t

)−1
d→ N

(
0, σ2εx/

(
σ2x
)2)

(8)

where σ2εx = E (ε2tx
2
t ) is finite.

Solution: Since (εt, xt)
′ satisfies a drift criterion with drift function δ (ε, x) =

1 + ε4 + x4, (εt, xt)
′ is weakly mixing with E[ε4t ] + E[x4t ] < ∞. By the LLN

for weakly mixing processes,

1

T

T∑
t=1

x2t
p→ σ2x.

Next, we establish that T−1/2
∑T

t=1 εtxt
d→ N (0, σ2εx) using a CLT for mar-

tingale differences from the lecture notes. Since (εt, xt) is weakly mixing
it suffi ces to show that E[εtxt|εt−1, xt−1] = 0 and E[(εtxt)

2] < ∞. The
latter condition is ensured by the Hölder (or Cauchy-Schwarz) inequality:
σ2εx = E[(εtxt)

2] ≤ (E[ε4t ]E[x4t ])1/2 <∞. We have that

E[εtxt|εt−1, xt−1] = E[σtηtxt|εt−1, xt−1]
= σtE[ηtxt|εt−1, xt−1]
= 0,

where the latter equality follows by the assumption that E[ηtxt|εt−1, xt−1] =
0. We conclude that T−1/2

∑T
t=1 εtxt

d→ N (0, σ2εx). This combined with the
result that 1

T

∑T
t=1 x

2
t

p→ σ2x yields the desired result.
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Question A.4: By Question A.3 one can conclude that despite ARCH
effects the estimator of the OLS estimator β̂ is still asymptotically Gaussian.
Explain how you would find the MLE of β when εt is given by the ARCH(1)
model.
Solution: The log-likelihood function is (up to a constant) given by

T∑
t=1

{
−1
2
log[σ2t (α, β)]−

(yt − βxt)2
2σ2t (α, β)

}
,

where σ2t (α, β) = 1+α(yt−1− βxt−1)2. The maximum likelihood estimate of
(α, β) can be obtained by numerical maximization of the function.
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Question B:

Suppose that the effi cient log-price of a share of stock at time t is given by

P (t) = σW (t), t ∈ [0, T ],

where W (t) is a Brownian motion, σ > 0 is constant, and T > 0.

Question B.1: What is the distribution of P (t)?
With t− 1 ≥ 0, let

r(t) = P (t)− P (t− 1).
What is the mean and variance of r(t)?
Solution: Using the definition of a Brownian motion, P (t) ∼ N(0, σ2t).

Likewise, E[r(t)] = 0 and E[r2(t)] = σ2.

Question B.2: Suppose that the price P is observed at n + 1 equidistant
points between time t and t−1 ≥ 0, that is we observe {P (ti) : i = 0, 1, ..., n}
where ti = t− 1 + i/n.
One way to measure the volatility of r(t) would be to compute the realized
volatility given by

RV (t, n) =
n∑
i=1

(P (ti)− P (ti−1))2 .

Use that
P (ti)− P (ti−1) = σ(W (ti)−W (ti−1))

in order to find the probability limit of RV (t, n) as n→∞. Be precise about
the arguments used for deriving the probability limit.
Give an interpretation of letting n→∞.
Solution: By the definition of a Brownian motion and and of ti, P (ti)−

P (ti−1) = σn−1/2ηi (in distribution), where ηi ∼i.i.d.N(0, 1). Hence

RV (t, n) = σ2n−1
n∑
i=1

η2i .

By the LLN for i.i.d. processes, n−1
∑n

i=1 η
2
i

p→ 1, and hence RV (t, n)
p→ σ2.

Alternatively, from the lecture notes we know that for a general class of
continuous-time processes,

RV (t, n)
p→ [P ](t)− [P ](t− 1) = σ2t− σ2(t− 1) = σ2 as n→∞.
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The "n → ∞" can be interpreted as obtaining an increasing amount of
observations in the time interval [t − 1, t], i.e. we increase the sampling
frequency.

Question B.3: Suppose that we do not observe the effi cient price P (t), but
instead we observe P̃ (t) which is P (t) contaminated by some noise ε̃(t), that
is

P̃ (t) = P (t) + ε̃(t), t ∈ [0, T ],
with

ε̃(t) = σ̃W̃ (t),

where W̃ (t) is a Brownian motion and σ̃ > 0 is constant.
Now the realized volatility measure RV (t, n) from the previous question is
infeasible due the fact that we do not observe P (t). Instead we may compute

R̃V (t, n) =
n∑
i=1

(
P̃ (ti)− P̃ (ti−1)

)2
.

Assume that W (t) and W̃ (t) are independent, that is (W (t) : t ∈ [0, T ]) and
(W̃ (t) : t ∈ [0, T ]) are independent. Similar to the previous question, derive
the probability limit of R̃V (t, n) as n → ∞. Compare with the probability
limit of RV (t, n).
Solution: Similar to the previous question,

P̃ (ti)− P̃ (ti−1) = P (ti)− P (ti−1) + ε̃(ti)− ε̃(ti−1) = n−1/2σηi + n−1/2σ̃η̃i,

(in distribution) where η̃i ∼i.i.d.N(0, 1). Since (W (t) : t ∈ [0, T ]) and (W̃ (t) :
t ∈ [0, T ]) are independent, ηi and η̃i are independent. Hence, by the LLN
for i.i.d. processes,

R̃V (t, n) =
n∑
i=1

(n−1σ2η2i + n−1σ̃2η̃2i − n−12σσ̃ηiη̃i)
p→ σ2 + σ̃2,

where it is used that E(ηiη̃i) = 0.

Question B.4: Figure 1 contains a plot of the realized volatility of the
return of the Euro/Dollar exchange rate. At day t = 1, 2, ..., 796 the realized
volatility is based on n = 47 intra-daily return observations. Based on the
figure and in light of your findings in the previous questions, do you think
that the model P (t) = σW (t), from Question B.1 is suitable for the log-price
of the exchange rate? Discuss briefly.
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Figure 1: RV of Euro/Dollar returns

Solution: It is hard to say whether the model is suitable. Given that the
model is correct, for n large, the realized volatility should be constant over
time, according to the previous questions. This does not seem to be the case
based on the graph. Note, however, that no uncertainty about the estimates
are reported. Also, from Question B.2 RV (t, n) = σ2n−1

∑n
i=1 η

2
i ∼ σ2n−1χ2n

for any fixed n. Hence for any fixed n, RV (t, n) should be an i.i.d. chi-
squared-type process. This does not seem to be a good approximation of the
observed RV which seems to exhibit some degree of persistence.
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